Bài tích vô hướng của hai vecto này là tổng hợp các công thức tích vô hướng của 2 vecto trong hệ tọa độ phẳng Oxy và hệ tọa độ không gian Oxyz. Ngoài ra, bài viết còn nêu rõ những tính chất cũng như thủ thuật sử dụng công thức cho hiệu quả với người học.
Những công thức, tính chất của nó như thế nào? Câu trả lời có ngay dưới đây
1. Tích vô hướng của hai vectơ trong hệ tọa độ Oxy
a) Định nghĩa
Cho hai vectơ $\overrightarrow a $và $\overrightarrow b $khác vectơ $\overrightarrow 0 $. Tích vô hướng của $\overrightarrow a $và $\overrightarrow b $ là một số được ký hiệu là $\overrightarrow a .\overrightarrow b ,$ được xác định bởi công thức sau:
Trường hợp ít nhất một trong hai vectơ $\overrightarrow a $và $\overrightarrow b $bằng vectơ $\overrightarrow 0 $ta quy ước $\overrightarrow a .\overrightarrow b = \overrightarrow 0 $
Chú ý:
- Với $\overrightarrow a $và $\overrightarrow b $khác vectơ $\overrightarrow 0 ,$ta có:$\overrightarrow a .\overrightarrow b = 0 \Leftrightarrow \overrightarrow a \bot \overrightarrow b $
- Khi $\overrightarrow a .\overrightarrow a = {\left( {\overrightarrow a } \right)^2}$ tích vô hướng $\overrightarrow a .\overrightarrow a $ được kí hiệu là ${\left( {\overrightarrow a } \right)^2}$ và số này được gọi là bình phương vô hướng của vectơ $\overrightarrow a .$ Ta có
b) Tính chất
Với 3 vecto $\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $ bất kì và mọi số k thì ta có
Nhận xét. Từ các tính chất của tích vô hướng của hai vectơ ta suy ra:
c. Biểu thức tọa độ của tích vô hướng
Trên mặt phẳng tọa độ $\left( {0;\vec i;\vec j} \right),$ cho hai vec tơ $\vec a = \left( {{a_1};{a_2}} \right),{\text{ }}\vec b = \left( {{b_1};{b_2}} \right).$ Khi đó tích vô hướng $\vec a$và $\overrightarrow b $ là: $\vec a.\vec b = {a_1}{b_1} + {a_2}{b_2}$
Nhận xét: Hai vectơ $\vec a = ({a_1};{a_2}),\,\vec b = ({b_1};{b_2})$ khác vectơ $\vec 0$ vuông góc với nhau khi và chỉ khi: a1b1 + a2b2 = 0
d. Ứng dụng
Độ dài của vectơ: Độ dài của vec tơ $\vec a = ({a_1};{a_2})$ được tính theo công thức: $|\vec a| = \sqrt {a_1^2 + {a_2}^2} $
Góc giữa hai vec tơ: Từ định nghĩa tích vô hướng của hai vec tơ ta suy ra nếu $\vec a = \left( {{a_1};{a_2}} \right),{\text{ }}\vec b = \left( {{b_1};{b_2}} \right)$ khác vectơ $\overrightarrow 0 $ thì ta có:
Khoảng cách giữa hai điểm: Khoảng cách giữa hai điểm $A\left( {{x_A},\,{y_A}} \right),\,B\left( {{x_B},\,{y_B}} \right)$ được tính theo công thức: $AB = \sqrt {{{({x_B} – {x_A})}^2} + {{({y_B} – {y_A})}^2}} $
2. Tích vô hướng của 2 vectơ trong không gian Oxyz
a) Định nghĩa
Cho 2 vecto $\overrightarrow a = \left( {{x_1},\,{y_1},\,{z_1}} \right),{\text{ }}\overrightarrow b = \left( {{x_2},\,{y_2},\,{z_2}} \right).$Gọi $\overrightarrow A $là tích có hướng của hai vecto $\overrightarrow a $ và $\overrightarrow b .$ Khi tích này thường đươc kí hiệu bằng 1 trong 2 cách sau đây:
- Cách 1: $\overrightarrow A = \left[ {\overrightarrow a ;\overrightarrow b } \right]$
- Cách 2: $\overrightarrow A = \overrightarrow a \wedge \vec b$
Từ định nghĩa trên ta suy ra:
- Nếu có ít nhất một vecto bằng với $\overrightarrow 0 \Rightarrow \overrightarrow A = \overrightarrow 0 $
- $\overrightarrow a \ne \overrightarrow 0 ;\overrightarrow b \ne \overrightarrow 0 \Rightarrow \left\{ \begin{array}{l} \overrightarrow A \bot \overrightarrow a \\ \overrightarrow A \bot \overrightarrow b \end{array} \right.$ (Chiều tuần theo quy tắc cái đinh ốc và độ dài xác định theo $\left| {\left[ {\overrightarrow a ,\vec b} \right]} \right| = \left| {\overrightarrow a } \right|\left| {\vec b} \right|.\sin \left( {\overrightarrow a ,\vec b} \right)$)
- $\left\{ \begin{array}{l} \overrightarrow a \ne \overrightarrow 0 ;\overrightarrow b \ne \overrightarrow 0 \\ \overrightarrow A = \left[ {\overrightarrow a ,\overrightarrow b } \right] = \overrightarrow 0 \end{array} \right.$ khi và chỉ khi cùng phương với $\overrightarrow b $
b) Tính chất
Có 6 tính chất quan trọng:
c) Ứng dụng
d) Hướng dẫn tính toán
Khi thực hành tính toán, các em có thể tính tích có hướng ở ngoài nháp như sau:
Cho 2 vecto $\overrightarrow a = \left( {{x_1},\,{y_1},\,{z_1}} \right),{\rm{ }}\overrightarrow b = \left( {{x_2},\,{y_2},\,{z_2}} \right).$
Bước 1: Viết tọa độ mỗi véc tơ hai lần liền nhau, các tọa độ tương ứng của hai véc tơ thẳng cột
Bước 2: Xóa bỏ hai cột ngoài cùng
Bước 3: Tính toán theo quy luật Nhân chéo rồi trừ và kết quả
Trên đây là bài viết chia sẻ những kiến thức quan trọng về tích có hướng của hai vecto. Hy vọng với những chia sẻ trên đây đã giúp ích được cho bạn trong quá trình học tập.